ФЭНДОМ


Количество информации. Измерение информации. Единицы измерения Править

За единицу количества информации принимается такое количество информации, которое содержит сообщение, уменьшающее неопределенность в два раза. Такая единица названа "бит".

Для информации существуют свои единицы измерения информации. Если рассматривать сообщения информации как последовательность знаков, то их можно представлять битами, а измерять в байтах, килобайтах, мегабайтах, гигабайтах, терабайтах и петабайтах.

Давайте разберемся с этим, ведь нам придется измерять объем памяти и быстродействие компьютера.

Бит

Единицей измерения количества информации является бит – это наименьшая (элементарная) единица.

1бит – это количество информации, содержащейся в сообщении, которое вдвое уменьшает неопределенность знаний о чем-либо.

Байт

Байт – основная единица измерения количества информации.

Байтом называется последовательность из 8 битов.

Байт – довольно мелкая единица измерения информации. Например, 1 символ – это 1 байт.

Производные единицы измерения количества информации

1 байт=8 битов

1 килобайт (Кб)=1024 байта =210 байтов

1 мегабайт (Мб)=1024 килобайта =210 килобайтов=220 байтов

1 гигабайт (Гб)=1024 мегабайта =210 мегабайтов=230 байтов

1 терабайт (Гб)=1024 гигабайта =210 гигабайтов=240 байтов

Запомните, приставка КИЛО в информатике – это не 1000, а 1024, то есть 210 .

Методы измерения количества информации

Итак, количество информации в 1 бит вдвое уменьшает неопределенность знаний. Связь же между количеством возможных событий N и количеством информации I определяется формулой Хартли:

N=2i.

Алфавитный подход к измерению количества информации

При этом подходе отвлекаются от содержания (смысла) информации и рассматривают ее как последовательность знаков определенной знаковой системы. Набор символов языка, т.е. его алфавит можно рассматривать как различные возможные события. Тогда, если считать, что появление символов в сообщении равновероятно, по формуле Хартли можно рассчитать, какое количество информации несет в себе каждый символ:

I=log2N.

Вероятностный подход к измерению количества информации

Этот подход применяют, когда возможные события имеют различные вероятности реализации. В этом случае количество информации определяют по формуле Шеннона:

, где

I – количество информации,

N – количество возможных событий,

Pi – вероятность i-го события.